a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 测评 > 正文

浅谈计算机视觉中的目标检测

近年来,随着深度学习的发展,对目标检测的研究逐渐由传统机器视觉算法转移到深度神经网络方向。
资讯频道文章B

  目标检测是属于计算机视觉范畴的重要研究方向,传统目标检测主要是基于统计或知识的方法,近年来,随着深度学习的发展,对目标检测的研究逐渐由传统机器视觉算法转移到深度神经网络方向。

  计算机理解图像的任务表述可以分为分类、检测、语义分割、实例分割4个层次,目标检测是其中一个层次。

bd3eb13533fa828bab21c0568296fd32960a5a90.jpeg

  图1:图像理解的4个层次 图片来源:[1]

  a是分类(Classification),是将图像分成不同的类别,只需输出图像对应的类别,是最基础的图像理解任务,在应用领域,人脸识别、手势识别等都可以归为分类任务。

  b是检测(Detection), 检测是要根据大量预定义的类别同时获得同一帧图像中各种目标的类别信息和位置信息,需要从图像分离出目标并输出这一目标的类别和位置,检测模型的输出通常是包含类别和位置的数据列表。

  c是语义分割(Semantic segmentation),语义分割是是对前背景分类的拓展,要分离开具有不同语义的图像部分,也可对图像像素级描述。

  d是实例分割(Instance segmentation),实例分割是检测任务的拓展,要分离背景并描述出目标的轮廓,对图像像素级描述,适用于理解要求精细的场景。

  一)传统目标检测

  1、基于知识的方法

  核心思想是模块化。以人脸检测为例,它将人脸划分成眼、鼻、嘴等各个模块的组合,利用先验知识来识别各个模块,同时基于各个模块之间的距离来进行人脸的识别。

  2、基于统计的方法

  主要基于统计学习,将整个待检测图片看作一个像素矩阵,利用其统计特性结合一些机器学习的算法进行识别,例如Fisher线性判别。

  二)深度学习目标检测

  1.单阶段(one-stage)检测模型

  单阶段模型没有中间的区域检出过程,直接从图片获得预测结果,也被称为Region-free方法,单阶段模型只进行一次类别预测和位置回归,卷积运算的共享程度更高,拥有更快的速度和更小的内存占用。代表算法有YOLO、SSD算法等。

  1b4c510fd9f9d72a6078378355a39432359bbb9b.jpeg

  图2:YOLO网络架构 图片来源:[2]

  YOLO论文链接:https://arxiv.org/abs/1506.02640

  9a504fc2d5628535d48dfdd11066cac0a6ef6364.jpeg

  图3:SSD网络架构 图片来源:[3]

  SSD论文链接:https://arxiv.org/abs/1512.02325

  2. 两阶段(two-stage)检测模型

  两阶段模型对图片分两阶段处理,也称为基于区域(Region-based)的方法。例如RCNN是先提出若干可能包含物体的候选区域(即图片的局部区域,称为Region Proposal),RCNN使用的是Selective Search算法;再在提出的这些区域上运行分类网络检测出每个区域的物体。代表算法有RCNN、Fast-RCNN、Faster-RCNN 等。

  63d0f703918fa0ecd59d4734a61ee5e83c6ddbc5.jpeg

  图4:RCNN网络架构 图片来源:百度

  RCNN论文链接:https://arxiv.org/abs/1311.2524

  08f790529822720e14193c9cfb42b640f31fab15.jpeg

  图5:Fast-RCNN网络架构 图片来源:百度

  Fast-RCNN论文链接:https://arxiv.org/abs/1504.08083

  进入深度学习时代以来,目标检测发展主要集中在两个方向:第一种是one stage算法,如YOLO系列,这类算法会直接在网络中提取特征来预测物体分类和位置,这类算法速度快,但是准确性要低一些。第二种是two stage算法,如RCNN系列,这类算法需要先生成region proposal(目标候选框),然后再对候选框进行筛选、分类和回归,这类算法准确度较高,但是速度相对较慢。

  随着科技的发展,相信计算机视觉技术可以帮助我们提取、分析和理解更多更有用的信息,使我们的生活越来越智能化。

  faf2b2119313b07e27455baa735e2d2596dd8c2c.jpeg

  图6:Faster-RCNN网络架构 图片来源:

  Faster-RCNN论文链接:https://arxiv.org/abs/1506.01497

  [1]从R-CNN到RFBNet,目标检测架构5年演进全盘点

  [2] You Only Look Once:Real-Time Object Detection

  [3] SSD: Single Shot Multibox Detector

参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

资讯是全球知名展览公司百科展览集团旗下的专业媒体平台,自1994年品牌成立以来,一直专注于安全&自动化产业前沿产品、技术及市场趋势的专业媒体传播和品牌服务。从安全管理到产业数字化,资讯拥有首屈一指的国际行业展览会资源以及丰富的媒体经验,提供媒体、活动、展会等整合营销服务。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈
Baidu
map