人脸图像预处理技术
人脸图像预处理是基于人脸检测结果,对图像进行处理并最终服务于特征提取的过程。系统获取的原始图像由于受到各种条件的限制和随机干扰,往往不能直接使用,必须在图像处理的早期阶段对它进行灰度校正、噪声过滤等图像预处理。对于人脸图像而言,其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
图像是人类获取信息、表达信息和传递信息的重要手段。利用计算机对图像进行去除噪声、增强、复原、分割、提取特征等的理论、方法和技术称为数字图像处理。
数字图像处理技术已经成为信息科学、计算机科学、工程科学、地球科学等诸多方面的学者研究图像的有效工具。数字图像处理主要包括图像变换、图像增强、图像编码、图像复原、图像重建、图像识别以及图像理解等内容。数字图像的边缘检测是图像分割、目标区域识别、区域形状提取等图像分析领域十分重要的基础,也是图像识别中提取图像特征的一个重要属性,边缘检测算子可以检查每个像素的邻域并对灰度变化率进行量化。
空域滤波按照空域滤波器的功能又可分为平滑滤波器和锐化滤波器。平滑滤波器可以用低通滤波实现,目的在于模糊图像或消除噪声;锐化滤波器是用高通滤波来实现,目的在于强调图像被模糊的细节。
光照不理想的情况下,为了把人脸区域从非人脸区域分割出来,需要使用适合不同肤色和不同光照条件的可靠的肤色模型。常用的RGB表示方法不适合于皮肤模型,在RGB空间,三基色(R、G、B)不仅代表颜色,还表示了亮度。由于周围环境光照的改变,亮度可能使人脸的检测变得更加复杂,在皮肤的分割过程中是不可靠的。为利用肤色在色度空间的聚类性,需要把颜色表达式中的色度信息与亮度信息分开,将R、G、B转换为色度与亮度分开的色彩表达空间可以解决这个问题。
RGB色彩系统用R、G、B三种基本颜色分量来表示数字图像像素的颜色值。我们非常熟悉的计算机屏幕的显示通常采用RGB色彩系统。这是最常见的色彩系统,RGB色系坐标中三维空间的三个轴分别与红、绿、蓝三基色相对应,原点对应于黑色,离原点最远的顶点对应于白色,其他颜色落在三维空间中由红、绿、蓝三基色组成的彩色立方体中。其他的色彩系统常以RGB色彩系统为基础,其分量可以描述为RGB三色的线性或非线性函数。RGB色彩系统通过色彩的相加来产生其他颜色,通常称为加色合成法。
当光照条件发生变化时,人脸的颜色也会发生一定的变化。实验表明,当待检测的图像亮度高于训练图像的亮度时,人脸大部分区域的颜色不会超过正常光照条件下人脸颜色的变化范围。但当待检测的人脸图像的亮度低于训练样本图像的亮度时,人脸颜色很可能超出正常光照条件下人脸颜色的变化范围。为了解决这一问题,就要对待检测的人脸图像进行光线补偿。光线补偿对于画面较暗的图像很有效,能极大提高后续肤色建模的效果。对于光线较暗的图片进行光线补偿可以很好地提高人脸肤色建模的效果。
在运动场景下,多数时候会抓拍到的只有半张脸的图片,使用对称补值的方式,能有效地为下一步特征提取补齐整张人脸的最低特征值,并进行有效识别;对于动态识别场景,往往出现人脸信息不全的情况,特别是对于疑犯等,都存在故意压低头或者侧脸方式行走,避免被监控抓拍到全脸的情况;使用半脸对称补值方式,有效地解决了此场景问题。
在一系列的预处理后,人脸识别的最终准确率及效率得到大幅度提升,且能适用更多的应用场景,对于原始已建设的安防系统,不需要二次的改造,不仅节约成本,也解决实际问题。