a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

浅释安防监控系统发展及图像质量的检测

资讯频道文章B

视频安防监视系统日新月异,发展速度很快,并不断自我创新,带来一次又一次的视频安防监控系统的改革。据市场调研机构Frost&Sullivan的预测,到2010年,基于IP视频安防监控系统将取代传统的安防监控系统,成为视频安防监视市场的主要构成部分。


视频安防监视市场的发展
视频安防监视系统日新月异,发展速度很快。第一代视频安防监控系统是以VCR为代表的传统视频安防监控系统;接着在上世纪90年代中期,以DVR为代表的第二代视频安防监控系统出现在视频安防监控市场上,紧接着DVR系统又进一步发展成为具有网络功能的NVR系统;视频安防监视系统不断自我创新,带来了一次又一次视频安防监控系统的改革,目前正在蓬勃发展的网络视频安防监控系统,即IP视频安防监控系统就是第三代安防监控系统。据市场调研机构Frost& Sullivan的预测,到2010年,基于IP视频安防监控系统将取代传统的安防监控系统,而成为视频安防监视市场的主要构成部分。图1为该调研机构的数据分析图。


由于技术的发展,网络的普及,市场越来越广泛,监控点也越来越多,监控显示器的数量也会随之增加,仅依靠人力资源去监控画面,必然会因人眼的疲劳和人对物的专注力下降而导致监控力度降低,判断有误,正所谓“智者千虑,必有一失”。为了防止人的劳累而导致错误的判断,需要增加工作人员数量,导致人力资源成本的提高。这些因素引起了人们对智能监控的需求,各大IC厂商对此进行了大规模的研究与开发,如目前Sharp 根据市场的发展趋势开发出一颗智能图象侦测芯片。它具备了“移动侦测”、“人员访问统计”、“人脸检测”、“物品状态检测”、“安全驾驶检测”等智能化功能。它与IP Camera相结合,可以一天24小时不间断地对视频进行监控,达到全天候的智能监控需求,提高报警精确度及响应速度,其可靠性更高,成本低廉,也节省了大量人力资源。智能化网络监控系统必将是视频安防监视市场的另一个高峰。

 
产品定位的变化,不仅是网络的普及和市场需求所引导,其技术方面的发展和关键元件性能上的提升也有不可分割的关系。

[nextpage]
技术及性能上的发展
当IP Camera产品逐渐被广泛应用的同时,人们对它可是“一则以喜,一则以惧”。所谓惧,就是其图像质量是否可以跟上需求。比如在超市里抓拍到小偷,但能否作为证据呢?这就要看图像的细节是否足够?在交通安全检查方面,也同样需要能够看清楚车牌,这也需要非常高的分辨率。在夜晚的时候还需要非常高的灵敏度,才能看清物体。这些需求已经超越了监控器的限制——NTSC为525线,PAL为625线,为此各CCD厂商已经作出了快速响应。由图2可以看出,应用在安防领域的CCD已由过去的数十万像素突破到百万像素,如在同样的监控范围内,使用百万像素的CCD 比过去数十万像素的CCD分辨率要高1倍左右。而这样的效果也只能在网络化的产品上才能体现出来,所以百万像素的IP Camera出现,提高了停车场、机场、学校等监控应用中的图像质量,也为法院提供了非常好的视频监控证据。


在CCD灵敏度方面,为了提高在低照度环境下面的图像质量和满足各种市场的需求,各CCD厂商都在努力研究。比如某公司就在此方面做出了非常大的贡献,从图3可以了解到,该公司所研究的CCD,其灵敏度由原来的1900毫伏提升到目前的2860毫伏,预计在2008年第四季度,将会将2008年第二季度退出市场的具有4290毫伏超高灵敏度的CCD正式生产。灵敏度的大幅度提升将解决在照度非常低的环境下,无法看清物体的问题,使安全防范更加到位。


当前端的感应器逐步升级的同时,后端的处理芯片也不甘示弱,为提高性能而作出非常大的努力。目前后端的处理芯片已经升级到12位,比如LR38690,它增加了自动聚焦功能, 增强了压制色滚动功能及提升了图像性能。这些功能促使产品开发者更易开发出高图像质量且带有自动聚焦功能的IP Camera产品,使产品的性能锦上添花,具有更开阔的产品市场。


网络技术不断发展,带宽也不断增加,为了更好地利用网络资源和本地存储资源,引起了网络多媒体芯片厂商的关注。因此出现了视频压缩技术研究热潮,该技术已由过去的MJPEG格式一直发展到目前的H.264。这些技术的发展提高了网络带宽的使用效率并降低了录像的存储容量,也促使同一网络内可以同时使用多台摄像机,减少了布线和劳力成本,也对推动IP Camera的发展起到一定作用。如海思推出的HI3510就体现了这一优点。

[nextpage]
传感器技术的进步,处理芯片性能的加强,网络多媒体芯片功能的优化都给整个IP Camera的开发及发展带来了非常大的变化。在整个产品性能的提升过程中,除了关键元件做出了巨大贡献外,还有一些鲜为人知的功臣——产品开发者对硬件噪音的研究;根据不同的镜头与滤光片及产品的需求进行图像质量的调整与研究;产品整体结构的研究等等。这些研究的成功让这些芯片的性能发挥的淋漓尽致。


对于如何评判产品在图像质量上的研究成果和其目前达到何等水平,很多人都会采用比较法。这种方法尽管可取,但其结果只能反映出不达标的现象,而不能很详细的描述出问题的所在。该方法增加了工程师的分析力度,增加了研究时间,延误了产品上市时间。

 


图像质量检测
随着市场的发展,技术的进步,IP Camera的性能也逐步提升,其优势是家喻户晓。如何有效的检测IP Camera的最终图像质量效果呢?目前对图像质量的检测分两类:主观评价和客观评价。


主观评价方面,大家可以参考ITU-RBT.500-7标准所定义的两种主观评价方法。
1、双刺激连续质量分级法
测试方法:
·将待评估的影像和相应的参考影像交替播放给评估者看,每个影像持续时间为10s;
·每个相同的影像片段之后有2秒的灰画面间隔,评估者可在此期间打分。当所有测试影像片段进行评测完毕后,对所得数据进行平均运算,这个平均值作为该影像的评价分。


2、单刺激连续质量评价方法
测试方法:
·将待评估的影像播放给评估者看;
·评估者评价时间约30秒,在此其间由评估者根据自己的判断给出影像的评价分。


客观评价方面,ITU-RVQEG提出了一些评价方法,其中有:峰值信噪比(PSNR)和均方差(MSE)。这些方法主要是用作图像压缩等领域中信号重建质量的测量方法以及噪音评价。如MediaOptimacy软件在此方面的评测较为齐全,它具有对影像的图像跳跃、块效应、模糊度等方面进行评价。


在色彩还原,白平衡,自动曝光收敛性能,图像均匀性,动态范围,分辨率等图像质量方面测试又该如何进行评测呢?
1、色彩还原方面
·测试图:采用GretagMacbeth 的ColorChecker card或DNP的Color bar;
·测试方法:在标准光源箱,对测试图进行摄影;
·评价方法:在Lab表色系统里,使用色差计算公式 dE =( dL^2 + da^2 + db^2 )^(1/2) 计算出每个实际色块与标准色块的差距,以此值判断色彩的偏差。
其中:
dE:表示色差,该数值越大,表明色彩偏差越大;
dL:亮度差,即待测色块与标准色块之间的亮度差;
da,db:色度差,既待测色块与标准色块之间在Lab表色系统里的ab坐标系统的色度差。

[nextpage]
2、白平衡方面
·原理:我们知道当U和V为0的时候,只有亮度信号,即不存在色偏问题。利用该原理与RGB转换YUV公式可以推导出U=V=0时,R=G=B,既R/G = B/G = 1;
·测试图:使用GretagMacbeth的ColorChecker中的灰阶色块数据或DNP光箱;
·测试方法:对准上述测试图或光箱,进行摄影;
·评价方法:依据原理中所推导出的RG = R/G 和 BG = B/G公式进行计算,RG和BG越小越表明图像色偏小,白平衡越准确。


3、自动曝光收敛性能方面
·测试设备:使用LSB-111可变色温光源箱设备,该设备可以提供光亮度在LV3-LV16@STEP:0.1Lv。因设备的极限,我们可以在LV3的环境下增加ND filter(Neutral density filter中性滤光片),以此获取小于LV3的光亮度;
·测试方法:首先将IP Camera放在光源设备前,然后调整光源到指定LV;接着进行摄影。再接着分析当前影像上的亮度数值,并做记录,这样我们就可以得到一个环境亮度LV与影像亮度Y的表格。最后通过以下评价方式进行评价;
·评价方法:在YUV表色系统里,我们可以根据Y= 0.3×R+0.6G+0.1B的计算公式计算出每一帧图像的亮度。由此我们就可以获取到一个由环境亮度与图像亮度结合的数据表格。利用公式std = (∑(Y0-Yi)^2/∑)^(1/2),其中Y0为所有图像亮度的平均值;Yi表示第i环境亮度所对应的图像亮度;求得图像亮度在环境亮度变化过程中std值,这个数值越小,表明曝光收敛性能越好。


4、图像亮度均匀性方面
·测试设备:使用DNP光箱;
·测试方法:在DNP光箱处进行影像,并分析影像数据;
·评价方法:在YUV表色系统里,分析影像中每一帧的四角和正中央区域的亮度Y数据,其公式为Uniformity = min(Y1,Y2,Y3,Y4,Y0)/Y0×100%。
其中
Y0:图像中央区域平均亮度;
Y1,Y2,Y3,Y4:图像四角亮度。
Uniformity这个数值越大,说明图像均匀性越好。


5、动态范围
·测试图:参考Kodak Q-13 chart或ISO14524;
·测试方法:在标准光源箱内对准测试图进行摄影并做分析;
·评价方法:获取每帧图像内灰阶块的RGB数据并将数据转换到YUV表色系统里,这样我们就可以得相应的灰阶块亮度Y,接着对这些数据进行拟合运算,最后我们就可以得到一条灰阶块与亮度的关系曲线。这条曲线必须是递减曲线,不能出现倒置现象或出现异常的不平滑曲线。曲线内较为平缓的位置为灰阶无法识别位置,以此判断出可识别灰阶的数量,该数量越多越好。

[nextpage]
6、分辨率方面
·测试图:采用ISO12233或USAF1951;
·测试方法:在标准光源箱内对测试图进行摄影
·评价方法:对每帧图像进行二值化运算,然后使用图像识别算法找出最小可以识别位置,并标志及获取相应的分辨率数据。该分辨率数值越高说明分辨率越好;
注意:分辨率不仅与传感器的像素大小有关系,还与镜头及滤光片有关系。所以在开发或测试初期,必须根据传感器的像素大小找到合适的镜头和OLPF(光学低通滤波器)。

 
以上的这些图像质量测评方法不仅适合低像素的IP Camera图像质量评价,也适合目前百万像素以上的图像质量评价,尤其是分辨率部分,它在百万像素的图像质量评价上起到非常重要的作用。这些评测方法的应用比目前业界内普遍使用的比对法更为科学性和合理性。如可配合现在市场上流行的图像分析软件进行量化分析,则工作上更加方便,也提高测评软件开发速度。比如Imatest软件,它是行业的佼佼者,它涵盖了色彩还原、白平衡、动态范围、均匀性、MTF、SQF、SFR 、杂讯等测试,但目前Imatest只能对静态图像进行分析,所以需要用户使用其提供SDK进行二次开发,对影像中每一帧的数据进行分析评价。


通过以上的评价方法,我们可以得到很多主观和客观的评价数据,那么如何整合这些数据并对图像质量水平进行一个综合性评价呢?根据现在众多大学的研究和实际操作情况来看,借助模糊数学中的模糊综合评价模型,是一个非常科学的,合理的综合评价方法。该方法的引入,能够准确判断出目前图像质量水平。这个综合性评价方法也为工程师们提供了一个调试图像质量的方向,缩短了产品研究及开发周期,其产品更能赢得市场欢迎。


性能优越,集成度高的解决方案和具有功能强大的图像质量检测手段的结合,促使IP Camera的性能和图像质量更加卓越,功能更加多元化,满足各个领域消费者的需求。

参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

资讯是全球知名展览公司百科展览集团旗下的专业媒体平台,自1994年品牌成立以来,一直专注于安全&自动化产业前沿产品、技术及市场趋势的专业媒体传播和品牌服务。从安全管理到产业数字化,资讯拥有首屈一指的国际行业展览会资源以及丰富的媒体经验,提供媒体、活动、展会等整合营销服务。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
Baidu
map