a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

浅析基于机器视觉实现织物疵点自动检测

织物疵点的自动化检测是工业自动化视觉检测的一个分支,它是对织物质量进行控制和实现织物生产过程和品质检验的关键环节。
资讯频道文章B

  织物疵点的自动化检测是工业自动化视觉检测的一个分支,它是对织物质量进行控制和实现织物生产过程和品质检验的关键环节。本文主要概述在利用机器视觉和数字图像处理技术开发一套织物疵点自动检测系统。

  织物表面在高照度、高工作频率荧光灯光源的照射下,通过CCD线阵式相机对织物表面进行扫描获得灰度图像数据,再经有效的识别算法实现疵点的自动检测和评分任务。

  织物疵点自动检测系统组成

  一般而言,基于图像技术的织物疵点的自动检测系统设计可分为六个部分:数据获取、疵点检测、特征抽取、特征分析、疵点分类和文档输出。数据获取部分包括选择可行的照明光源和光电传感器,常用的有面阵式、线阵式扫描CCD相机及激光扫描仪。

  一般在图像处理技术上,多采用高性能的CCD相机。照明光源的选择有荧光灯和光纤两种。这一阶段的工作至关重要,可以帮助整个系统获得一个清晰照度均匀的图像,生成系统的原始数据,从而简化下阶段的检测特征提取和分析的算法。其次,整个系统的检测精度从硬件的构成角度上,也往往决定于光电传感器的物物理和光学分辨率。通常考虑到成本因素,这一阶段的工作常常被忽视,导致了后期检测算法的复杂化。

  第二阶段的工作是检测织物当中是否包含疵点以及实现疵点的报警,即疵点的识别工作。采用的算法通常有基于像素统计特征的阈值法基于变换的滤波法基于织物纹理特征的分割法和基于织物纹理建模的识别法。

  第三阶段的工作是完成疵点特征的抽取,构造特征矢量,利用可能少的模式特征来描述疵点的类别,并且特征的抽取不受疵点大小旋转和位置的变化。所谓的特征抽取,就是对模式的某些物理性质进行数学描述,具体地讲,就是对将原始的数字图像数据进行变换,得到最能反映疵点模式分类的本质特征。一般将原始的数据空间称为测量空间,将进行分类的空间称为特征空间,通过变换将维数较高的测量空间中的模式矢量变换到维数较低的特征空间的模式矢量,从而简化和提高分类的效率。疵点形态特征的抽取大多是通过变换的方法,另一方面,纹理特征的描述也是种重要的特征提取方法,除此以外,还有通过神经网络的方法实现特征的抽取。这一阶段的任务的复杂性取决于所要求分类疵点的种类。

  第四阶段主要是分析上一阶段所提取疵点的特征模式,保证特征的可分性、独立性和不变性。

  第五阶段是对提取疵点样本特征的学习,实现对疵点的分类。所使用的算法大多为:Bayer决策分类法、基于模糊集的分类和基于神经网络的BP算法、径向及网络算法和自组织的神经网络算法。

  最后,是对检测出的疵点及其分类标记的文档输出和数据管理工作。便于今后对疵点的进一步分析和对疵点成因及工艺的改进工作。

  系统的设计必须考虑到系统的成本、识别的精确度、检测的速度等问题。每个部分并不是单独设计的,一个有效、合理的设计方案是每个部分近乎优化的设计组合。

参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

资讯是全球知名展览公司百科展览集团旗下的专业媒体平台,自1994年品牌成立以来,一直专注于安全&自动化产业前沿产品、技术及市场趋势的专业媒体传播和品牌服务。从安全管理到产业数字化,资讯拥有首屈一指的国际行业展览会资源以及丰富的媒体经验,提供媒体、活动、展会等整合营销服务。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈
Baidu
map