GPU是替代不了CPU的,同样,CPU也替代不了GPU。如果形象点理解,GPU就像一群蚂蚁,这些蚂蚁都做着同样的事,而CPU就像一只猴子,这只猴子做着各种不同的事。从根本上说CPU和GPU它们的目的不同,且有不同侧重点,也有着不同的性能特性,在某些工作中CPU执行得更快,另一工作中或许GPU能更好。
当你需要对大量数据做同样的事情时,GPU更合适,当你需要对同一数据做很多事情时,CPU正好。
然而在实际应用中,后一种情形更多,也就是CPU更为灵活能胜任更多的任务。GPU能做什么?关于图形方面的以及大型矩阵运算,如机器学习算法、挖矿、暴力破解密码等,GPU会有所帮助。
简单地说,CPU擅长分支预测等复杂操作,GPU擅长对大量数据进行简单操作。一个是复杂的劳动,一个是大量并行的工作。
其实GPU可以看作是一种专用的CPU,专为单指令在大块数据上工作而设计,这些数据都是进行相同的操作。
要知道处理一大块数据比处理一个一个数据更有效,执行指令开销也会大大降低,因为要处理大块数据,意味着需要更多的晶体管来并行工作,现在旗舰级显卡都是百亿以上的晶体管。
CPU呢,它的目的是尽可能快地在单个数据上执行单个指令。由于它只需要使用单个数据单条指令,因此所需的晶体管数量要少得多。
目前主流桌面CPU晶体管都是十亿以下,和顶级GPU相差十倍以上,但它需要更大的指令集,更复杂的ALU(算术逻辑单元),更好的分支预测,更好的虚拟化架构、更低的延迟等等。
另外,像我们的操作系统Windows,它是为x86处理器编写的,它需要做的任务执行的进程,在CPU上肯定更为高效,你想每个线程的任务并不相同,基本上难以并行化,完全发挥不了GPU的长处。
那么,可以预见在未来,随着CPU进一步强化处理数据块的能力,我们将看到CPU和GPU架构之间的融合,而且随着制造技术的进步和芯片的缩小,GPU也可以承担更复杂的指令。
CPU与GPU间的分工虽然还是大有不同,但彼此间的交集无疑会更多。