a&s专业的自动化&安全生态服务平台
公众号
安全自动化

安全自动化

安防知识网

安防知识网

手机站
手机站

手机站

大安防供需平台
大安防供需平台

大安防供需平台

资讯频道横幅A1
首页 > 资讯 > 正文

2020人脸识别报告(上):上万家企业入局,八大技术六个趋势

 广义的人脸识别实际包括构建人脸识别系统的一系列相关技术 , 包括人脸视图采集 、 人脸定位 、 人脸识别预处理 、 身份确认以及身份查找等 ; 而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术和系统 。 此外 , 部分应用场景下还可能涉及质量评价 、 活体检测等算法模块。
资讯频道文章B

  近年来, 随着人工智能、计算机视觉、大数据、云计算、芯片等技术的迅速发展,人脸识别技术取得了长足的进步并且在众多场景中得以成功应用并大规模商业化普及,为经济社会的发展以及人们日常生活带来便捷 。

  就市场发展趋势而言, 人脸识别应用场景虽然渗透各个行业场景, 但市场规模增长趋势出现分化, 国内市场呈现从算法竞争到芯片全产业链激烈竞争的状态; 就技术发展层面, 边缘端 SOC 芯片算力的提升使得人脸识别系统中的部分甚至全部算法可以运行在边缘设备上, 从而使云边结合已成为人脸识别产品和应用方案的发展趋势。

      本期的智能内参,我们推荐全国信息技术标准化技术委员会的研究报告《2020 年人脸识别行业研究报告》,从技术特点、行业发展趋势和标准化现状三方面还原人脸识别技术的最新发展状况。

  一、什么是人脸识别?

  人脸识别 ( Face Recognition) 是一种基于人的面部特征信息进行身份识别的生物特征识别技术 。 近年来 , 随着人工智能 、 计算机视觉 、 大数据 、 云计算 、 芯片等技术的迅速发展 , 人脸识别技术取得了长足的进步并且在众多场景中得以成功应用 。

  广义的人脸识别实际包括构建人脸识别系统的一系列相关技术 , 包括人脸视图采集 、 人脸定位 、 人脸识别预处理 、 身份确认以及身份查找等 ; 而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术和系统 。 此外 , 部分应用场景下还可能涉及质量评价 、 活体检测等算法模块。

  人脸识别的应用模式主要包括三种:

  (1)、人脸验证 (Face Verification) : 判定两张人脸图像是否属于同一个人 ,常用于身份认证如人证核验 。

  (2)、人脸辨识 ( Face Identification) : 给定一张人脸图像 , 判断是否在注册库中 , 若在则返回具体的身份信息 , 常用于静态检索或动态布控 。

  (3)、人脸聚类 ( Face Clustering) : 给定一批人脸图像 , 将相同人的图像归类到同一个类 , 不同人的划分为不同的类 , 常见的应用有智能相册 、 一人一档等 。

  1、发展历程

  人脸识别的研究开始于 20 世纪 60 年代 , 到 90 年代进入了初级应用阶段 ,主要停留在学术研究和小范围的实验室环境应用 , 直到 2012 年后的深度学习的复兴 , 人脸识别技术取得历史性的进步 , 真正实现大规模商业化普及 , 且识别能力已经远远超过了人类的常规辨识度 。

  目前 , 从全球人脸识别技术领域的应用场景布局来看 , 安防 、 金融 、 交通 、 楼宇等是相对较为成熟的领域 , 而在零售 、 广告 、 智能设备 、 教育 、 医疗 、 娱乐等领域也均有较多应用场景 , 为经济社会的发展以及人们日常生活的便捷带来了新机遇 。

  2、政策现状

  随着人工智能技术水平的迅速发展与经济发展水平的稳步踏进 , 在大数据应用的带领下 , 人脸识别技术在智慧城市 、 安防市场等行业得到了广阔的应用 ,与此同时人脸识别技术应用过程所涉及的监管问题也面临着越来越高的挑战 。面对目前正飞速发展的人脸识别技术 , 我国制定了一系列政策来促进其更健康的发展。

  2017 年 7 月 , 国务院发布 《 新一代人工智能发展规划 》 ( 国发 〔 2017 〕 35 号 )指出建设安全便捷的智能社会 , 围绕行政管理 、 司法管理 、 城市管理 、环境保护等社会治理的热点难点问题 , 促进人工智能技术应用 , 推动社会治理现代化 。同时 , 围绕社会综合治理 、 新型犯罪侦查 、 反恐等迫切需求 , 提出研发视频图像信息分析识别技术 、 生物特征识别技术的智能安防与警用产品 , 建立智能化监测平台的要求。

  全国人大在 2018 年修正的 《 中华人民共和国反恐怖主义法 》 第五十条提到 :公安机关调查恐怖活动嫌疑 , 可以依照有关法律规定对嫌疑人员进行盘问 、 检查 、 传唤 , 可以提取或者采集肖像 、 指纹 、 虹膜图像等人体生物识别信息和血液 、 尿液 、 脱落细胞等生物样本 , 并留存其签名 。

  2019 年 9 月 , 中国人民银行印发的 《 金融科技 ( FinTech ) 发展规划 ( 2019-2021 年 ) 》 ( 以下简称规划 ) , 明确提出构建适应互联网时代的移动终端可信环境 , 充分利用可信计算 、 安全多方计算 、 密码算法 、 生物识别等信息技术,建立健全兼顾安全与便捷的多元化身份认证体系 , 不断丰富金融交易验证手段,保障移动互联环境下金融交易安全 , 提升金融服务的可得性 、 满意度与安全水平 。

  同时 , 《 规划 》 也提出强化需求引领作用 , 主动适应数字经济环境下市场需求的快速变化 , 在保障客户信息安全的前提下 , 利用大数据 、 物联网等技术分析客户金融需求 , 借助机器学习 、 生物识别 、 自然语言处理等新一代人工智能技术 , 提升金融多媒体数据处理与理解能力 , 打造 “ 看憧文字 ” 、 “ 听懂语言 ” 的智能金融产品与服务 , 这也为人脸识别的安全应用提供了思路 。

  2019 年 9 月 , 工业和信息化部公开征求对 《 关于促进网络安全产业发展的指导意见 》 ( 征求意见稿 ) , 表示支持构建基于商用密码 、 指纹识别 、 人脸识别等技术的网络身份认证体系 , 着力提升支撑网络安全管理 、 应对有组织高强度攻击的能力 , 明确了生物特征识别技术在网络安全产业发展中的重要意义 。

  2020 年 11 月初 《 中华人民共和国国民经济和社会发展第十四个五年规划纲要 ( 建议稿 ) 》 ( 以下简称 《 建议稿 》 ) 全文发布 , 其中明确提出加快壮大新一代信息技术 、 生物技术等产业 , 推动互联网 、 大数据 、 人工智能等同各产业深度融合 , 培育新技术 、 新产品 、 新业态 、 新模式 。

  发展数字经济 , 加强数字社会 、 数字政府建设 , 提升公共服务 , 社会治理等数字化智能水平 。 同时提出 , 统筹发展和安全 , 建设更高水平的平安中国 , 加强社会治安防控体系建设 。该规划的出台为人脸识别技术和行业未来 5 年的发展规定了目标和方向 。

  信息安全层面 , 2016 年 11 月全国人大通过的 《 网络安全法 》 中将个人生物识别信息的管理进一步细化 , 范围进一步明确 。 国家网信办有关负责人表示,《 网络安全法 》 的公布和施行不仅保障广大群众的切身利益 , 还有利于高新技术的应用 , 进而激发互联网的巨大潜力 。

  2020 年 7 月由全国人大公布的 《 数据安全法 》 草案为数据加上 “ 防护罩 ” , 明确数据活动的红线 , 将来在 “ 数据主权 、 数据经营 、 数据交易 ” 等方面 , 通过法律条文的形式 , 推动数据时代的快速发展 。 国家坚持保障数据安全与发展并重 , 鼓励研发数据安全保护技术 ,积极推进数据资源开发利用 , 保障数据依法有序自由流动 。

  2020 年 10 月 21日全国人大公布的 《 个人信息保护法 ( 草案 ) 》 规定了个人信息是以电子或者其他方式记录的与已识别或者可识别的自然人有关的各种信息 ; 规定了个人信息的处理包括个人信息的收集 、 存储 、 使用 、 加工 、 传输 、 提供 、 公开等活动的要求 。

  二、技术细节

  1、 人脸识别技术原理

  当今主流的人脸识别算法 , 主要包括人脸检测 、 人脸预处理 、 特征项提取 、比对识别 、 活体鉴别五大步骤 。 其中人脸检测 、 人脸预处理 、 特征项提取可统称为人脸视图解析过程 , 即从视频和图像中检测出人脸 , 通过图像质量判断 ,选取合适的人脸图片 , 提取人脸特征向量 , 用于后续比对识别 ; 比对识别处理可以分为人脸验证 ( 1 :1 ) 和人脸辨识 ( 1 :N ) 两类 ; 活体鉴别算法用以判断人脸识别处理中的人脸图像 , 是否采集自真实人体 。

  在实际应用中 , 除了上述人脸识别算法 , 前端视图采集技术 、 人脸数据存储技术 、 应用软件管理技术也是人脸识别技术应用中重要的技术部分 。

  2、 人脸识别的研究机构介绍

  人脸识别作为最受关注的生物特征识别技术 , 国内外有众多科研院所 、 高等院校 、 企业等机构开展人脸识别相关技术的研究 、 开发和应用 。 截止 2020年 10 月 , 据企查查数据统计 , 全国共有 10443 家企业的名称 、 产品 、 品牌 、经营范围涵盖 “ 人脸识别 ” , 从成立时间来看 , 近 5 年相关企业数量不断剧增 ,2019 年成立了 1955 家, 2020 年仅 10 月前就新增 1139 家 。

  科研机构。人脸识别技术广受学术和产业研究机构关注 。 全球范围内 , 有众多知名学术机构在从事人脸识别领域的技术研究 , 比较有代表性的人脸识别技术研究机构包括斯坦福大学 、 加州大学伯克利分校 、 美国马萨诸塞大学 、 牛津大学 、 多伦多大学 、 香港中文大学 、 中科院自动化所 、 清华大学等 。

  (1)、斯坦福大学。斯坦福大学是最早在人脸识别技术上取得突破的研究机构之一 。 由华人科学家李飞飞教授领街的计算机视觉实验室 , 通过每年度基于 ImageNet 数据库举办的大规模视觉识别挑战赛 ( ILSVRC) , 极大的促进了人脸识别和计算机视觉技术的发展 。

  近期 , 斯坦福大学的研究团队研发出一款人脸跟踪软件 Face2Face, 它可以通过摄像头捕捉用户的动作和面部表情 , 然后使用 Face2Face 软件驱动视频中的目标人物做出一模一样的动作和表情 , 效果极其逼真 。 这项技术使用一种密集光度一致性方法 (dense photometric consistency measure) 来实时跟踪源和目标视频中的面部表情 。

  研究人员们称 ,由于源素材与被拍摄者之间快速而有效的变形传递 , 从而使复制面部表情成为可能 。 由于嘴形与其所说的内容高度匹配 , 因此可以产生非常准确 、 可信的契合 。

  (2)、加州大学伯克利分校。加州大学伯克利分校是国外人脸识别技术研究的重要发源地 , 早在 2005年就有关于人脸识别相关研究的理论工作 。 其中马毅 2008 年发表的 Sparsity and Robustness in Face Recognition, 在谷歌学术已获得 6321 余次的引用 , 在深度神经网络被大家广泛应用之前 , 是主流的人脸识别算法 。 在这篇文章中作者把稀疏表示理论应用到人脸识别这个场景中 , 提出了一个通用分类算法用于人脸识别 。

  这个新的框架为人脸识别领域的两个关键课题(特征项提取和对遮挡的鲁棒性)上提供了更好的理论指导。此外,该实验室近期在用低维模型处理高维数据、 特征选择等理论方向上有一定的产出, 提出了一种新型特征选择方法 (Conditional Covariance Minimization, CCM) , 该方法基于最小化条件协方差算子的迹来进行特征选择, 取得了较为突出的效果 。

  (3)、美国马萨诸塞大学。美国马萨诸塞大学也是国外人脸识别技术研究的重要发源地 , 开源了知名的人脸检测数据库 FDDB 和人脸识别数据集 LFWo FDDB 是全世界最具权威的人脸检测评测平台之一 , 其中包含 2845 张图片 , 共有 5171 个人脸作为测试集 。测试集范围包括不同姿势 、 不同分辨率 、 旋转和遮挡等图片 , 同时包括灰度图和彩色图 , 截止到目前 FDDB 所公布的评测集仍然代表了目前人脸检测的世界最高水平 。

  马萨诸塞大学还在 2007 年建立了人脸识别评测数据集 LFW, 用于评测非约束条件下的人脸识别算法性能 , 截至到目前是人脸识别领域使用最广泛的评测集合 。 该数据集由 13000 多张全世界知名人士互联网自然场景不同朝向 、 表情和光照环境人脸图片组成 , 共 5000 多人 , 其中 1680 人有 2 张或 2张以上人脸图片 。 每张人脸图片都有其唯一的姓名 ID 和序号加以区分 。 LFW测试正确率 , 代表了人脸识别算法在处理不同种族 、 光线 、 角度 、 遮挡等情况下识别人脸的综合能力。

  (4)、牛津大学。牛津大学 VGG (视觉几何)组实验室从 2015 年开始人脸识别相关研究 ,包括具有影响力的人脸数据库的发布以及深度人脸识别算法的研究 。 该实验室 2015 年在 BMVC 发表的 a Deep Face Recognition” 论文在谷歌学术已获得3600 余次的引用 , 其中发布的 VGG-Face 已成为深度人脸识别领域最常用的数据库之 一 。

  2018 年发布了大规模人脸识别数据 VGG — Face2, 是 VGG-Face的第二个版本 , 包含 331 万图片 , 9131 个 ID, 平均图片数为 362.6, 且覆盖了大范围的姿态 、 年龄和种族等 。 VGG-Face2 发布两年 , 已经获得了 800 余次引用 。 此外 , 该实验室近期在人脸识别置信度预测 、 基于集合的人脸识别等子方向上 , 每年产出一定量的学术工作 。

  (5)、多伦多大学。加拿大多伦多大学是基于深度学习的人脸识别技术发展的重要推手之一 。著名 “ 神经网络之父 ” Geoffrey Hinton 是该校的代表性学者 , 在 Hinton 的带领下 ,多伦多大学的研究者将反向传播 (Back Propagation) 算法应用到神经网络与深度学习 , 通过应用这项算法技术 , 人脸识别技术的识别性能得到极大提高 。

  近期 , 多伦多大学的研究人员在人脸识别隐私保护技术领域取到了一些新的进展 , 开发了一种动态干扰算法来进行人脸隐私保护 。 这种技术原理基于 “ 对抗性训练 ” , 通过建立起两种相互对抗的算法 , 当发现某种检测算法正在寻找脸部特征 , 干扰算法会自动调整这些特征 , 在照片中产生非常细微的干扰 , 通过这些干扰来阻碍整个检测系统的检测效果 。

  (6)、香港中文大学。作为最早投入深度学习技术研发的华人团队 , 在多年布局的关键技术基础之上 , 香港中文大学教授汤晓鸥率领的团队迅速取得技术突破 。 2012 年国际计算视觉与模式识别会议 ( CVPR ) 上仅有的两篇深度学习文章均出自其实验室 ;2011-2013 年间在计算机视觉领域两大顶级会议 ICCV 和 CVPR 上发表了 14 篇深度学习论文 , 占据全世界在这两个会议上深度学习论文总数 ( 29 篇)的近一半 。 他在 2009 年获得计算机视觉领域两大最顶尖的国际学术会议之一 CVPR最佳论文奖 , 这是 CVPR 历史上来自亚洲的论文首次获奖 。

  (7)、中科院自动化所。中科院自动化所是国内领先的模式识别领域研究机构 。 多年来 , 在人脸识别领域开展了广泛的研究 。 自动化所李子青研究员领导的人脸识别研究团队 ,提出了基于近红外的人脸识别技术 , 对光照变化影响的处理有较好的效果 ,并将该技术应用于 2008 年北京奥运会安保项目 。

  自动化所孙哲南研究员团队 , 在生成对抗网络基础上提出高保真度的姿态不变模型 (High Fidelity Pose Invariant Model, HF — PIM) 来克服人脸识别任务中最为经典的姿态不一致问题 。实验结果表明 , 该方法在基准数据集上的表现的视觉效果和定量性能指标都优于目前最好的基于对抗生成网络的方法 。 此外 , HF-PIM 所支持的生成图像分辨率也在原有方法的基础上提升了一倍 。

  (8)、清华大学。清华大学是国内最早从事人脸识别技术研究的研究机构之一 。 清华大学苏光大教授 , 自 1980 年代就开始了人脸识别技术研究工作 。 苏教授提出了 1 :1 图像采样理论和邻域图像并行处理机理论 , 并在 2005 年通过多计算机并行处理技术 , 显著提高了人脸识别处理的性能 。

  这项技术与 2012 年由多伦多大学 Hinton 团队提出的利用并行计算来提高反向传播算法的运算效能有异曲同工之妙 。 同时 , 苏教授团队提出了最佳二维人脸 、 不同类别的多特征描述以及MMP — PCA 等一系列人脸识别的理论和方法 。

  科技类企业。在人脸识别技术研究领域 , 众多科技类企业也起到了至关重要的作用 。 微软亚洲研究院较早就开始了人脸识别技术研究 , 发表了大量优秀的学术论文 ,2018 年 , 微软亚洲研究院提出的深度学习残差网络 RESNET, 在研究领域得到了广泛认可 ; 苹果公司在人脸识别技术上进行了深入研究 , 自 2017 年开始 ,就在其 iphoneX 手机上引入了刷脸解锁功能 ;

  日本电气 (NEC) 公司也是国际上人脸识别技术的先 行者之 一 , 很早就提出了基于人脸识别技术的公共安全解决方案 ;

  国内有 “ 人工智能四小龙 ” 之称商汤 、 旷视、 依图 、 云从等企业 , 在人脸领域 , 从学术研究到产业实践 , 都做了大量的工作 , 在复杂场景 , 大规模处理等领域 , 不断取得新的成果 ; 国内传统科技企业百度 、 阿里 、 腾讯 、 平安科技 、 海康 、 大华等 , 也在人脸识别技术领域开展广泛深入的研究 , 并结合其原有的业务领域的场景 , 取得显著的技术研究成果 。

  3、人脸识别技术优势及局限性

  技术优势。在不同的生物特征识别方法中 , 人脸识别技术有其自身特殊的优势 , 因而在生物识别中有着重要的地位 。

  (1)、 非侵扰性 , 人脸识别无需干扰人们的正常行为就能较好地达到识别效果 , 只要在摄像机前自然地停留片刻 , 用户的身份就会被正确识别 。

  (2)、便捷性 , 人脸识别采集设备简单 , 使用快捷 。 一般来说 , 常见的摄像头就可以用来进行人脸图像的采集 , 不需特别复杂的专用设备 。 图像采集在数秒内即可完成 。

  (3)、友好性 , 通过人脸识别身份的方法与人类的习惯一致 , 人和机器都可以使用人脸图片进行识别 。

  (4)、非接触性 , 人脸图像采集 , 用户不需要与设备直接接触 。 另外 , 可以在比较远的距离进行人脸图像的采集 。 装配了光学变焦镜头的摄像头 , 焦距可以提高到 10 倍以上 , 使景深范围扩展到 50 米以外 , 实现对远景清晰拍照 ,有效采集远处的人脸图像 。

  (5)、可扩展性 , 在人脸识别后 , 通过对识别结果数据进行下一步处理和应用 , 可以扩展出众多实际应用方案 , 如应用在出入门禁控制 、 人脸图片搜索 、上下班刷卡 、 非法人员识别等各个领域 。

  (6)、隐蔽性强 , 安全领域对于系统隐蔽性有较强要求 , 人脸识别在这方面比指纹等方式更具优势 。

  (7)、强大的事后追踪能力 , 系统记录的人脸信息是非常重要且易于利用的线索 , 更加有利于进行事后追踪应用 。

  (8)、准确度高 , 相比于人体 、 步态等其特征 , 人脸特征具备更强的鉴别性与更低的误报率 , 所能应用的底库规模上高出许多 , 目前超大规模 ( 十亿级别 ) 的人脸检索已经可以实用 。

  技术局限。人脸识别技术由于相似脸 、 年龄 、 算法偏见 、 面临的场景多样化以及人脸图像更易公开获取等原因 , 技术本身也面临着一定的局限性 。

  (1)、相似脸较难解决 。 双胞胎或者长相很相近的人脸容易识别错误 , 而该问题在目前暂时没有新技术能完全解决 。 NIST 分析报告指出 , 大部分情况下双胞胎仍能区分分数高低 , 但是往往都在阈值之上 , 在开放环境下应用效果较差 。

  (2)、算法偏见问题 。 由于当前人脸识别算法很大程度依赖于数据样本 ,但是不同人群的人脸数据样本存在差别 , 这导致了算法对不同地域 、 不同年龄人群的识别能力有差别 。

  美国国家技术标准研究院 NIST 的检查表明 , 人脸识别软件在不同地域 、 种族 、 性别 、 年龄上存在较大差异 。 比如 , 小孩子 , 老年人以及其他很少出现的人种或者肤色的人脸识别率相对较低 , 该问题亟需解决 。

  (3)、人脸识别率易受多种因素影响 。 现有的人脸识别系统在用户配合 、采集条件比较理想的情况下可以取得令人满意的结果 。 但是 , 在用户不配合 、采集条件不理想的情况下 , 会影响现有系统的识别率 。 例如根据 NIST 的测试报告 , 戴口罩情况下大部分算法的错误率会提高 1 个数量级以上 , 跨年龄 、 大角度等因素也会造成不同程度的下降 。

  (4)、年龄变化的影响 。 随着年龄的变化 , 面部外观也会变化 , 特别是对于青少年 , 这种变化更加明显 。 对于不同的年龄段 , 人脸识别算法的识别率也不同。

  (5)、安全性问题 。 人脸识别系统信息存储同样会面临黑客的攻击 。 所以对数据加密很重要 。 随着技术的不断提升 , 人脸识别技术在安全性上需要加强 。

  同时 , 人脸暴露度较高 , 相比对其它生物特征数据更容易实现被动采集 。 这也同时意味着人脸信息的数据更容易被窃取 , 不仅可能侵犯个人隐私 , 还会带来财产损失 。 大规模的数据库泄露还会对一个族群或国家带来安全风险 。

  4、 人脸识别技术的发展趋势

  随着人脸识别技术的广泛应用 , 也在不断促进技术本身持续发展 。 基础算法研究 、 人脸重建技术 、 戴口罩人脸识别 、 3D 人脸识别技术 、 新型人脸采集技术 、人脸聚类技术 、 和低质量人脸识别技术 , 是产业界和学术界关注的热点课题 ,也预示了人脸识别技术的发展趋势 。

  基础算法技术热点包括模型结构设计 、 损失函数设计 、 无监督 / 半监督学习算法和分布式自学习算法等 。 模型结构设计目前主要有手工设计与网络结构搜索 (NAS) 两种思路 。 ICCV 2019 轻量级人脸识别 (Lightweight Face Recognition) 竞赛结果显示 , 虽然对大模型场景下结构改进带来的提升则较为有限 , 但是轻量级场景下网络结构改进对于识别率提升较为明显 。

  损失函数设计的核心在于学习具备鉴别性且足够鲁棒的特征 。 近年来基于度量学习与各类 margin — based 方法逐渐成为主流。 在特征提取加速方面 , 主要的方法有轻量级网络 、 模型蒸惚 、 稀疏量化等 ; 在特征比对加速方面 , 主要的思路有量化以及各类近似最近邻检索技术 。

  低质量人脸识别技术。在实际的动态应用场景下 , 人脸识别技术由于场景的不可控因素 , 采集到的图片质量与训练图片的质量有很大差异 , 如人脸偏转 , 大幅度侧脸 ; 运动模糊和失焦模糊 ; 遮挡物(例如口罩 , 墨镜) ; 低的光照强度和对比度 ; 视频传输由于编解码过程产生的人脸信息丢失等 , 这些因素导致准确率极度下降 。

  针对这些具体问题 , 研究人员提出综合利用各种图像增强技术和图像生成技术对人脸识别算法准确率进行提升的方法 , 如采用对抗式生成网络对摄像头的风格进行迁移 , 采用基于深度学习的方法对小尺寸模糊人脸进行超分辨率重建和基于注意力机制对人脸图片进行去模糊处理等 。

  此外 , 3D 人脸识别技术也可以有效解决复杂场景下人脸单模态鲁棒性不足问题 , 如大角度 、 遮挡引起的效果下降问题 , 常用的融合策略有相似度融合 、 特征融合 、 决策融合等 。

  戴口罩人脸识别技术。今年新型冠状病毒疫情期间戴口罩人脸识别受到较大关注 。 常用的解决方法有数据增强 、 遮挡恢复 、 多部件模型融合等 , 可应用在人脸布控 、 陌生人检测 、 无感通行中 , 均不需要摘下口罩 , 在 30 万人像库的规模下 , 戴口罩人脸识别准确率可大于 90% 。

  人脸聚类无论是在个人领域的相集管理还是在智慧城市治理领域都有较为广泛的应用 。 早期主要基于传统的聚类方法如 k-means 等 , 但效果不佳 。 近年来 , 基于 GCN 的人脸聚类方法崭露头角 。 实际业务中 , 时空信息的挖掘也是研究的热点 。

  特定群体识别技术。针对儿童/老人 、 不同肤色群体的人脸识别 , 有标签的数据较少 , 而无标签的数据更多些 。 研究人员提出可以利用半监督/无监督学习方法带来性能的进一步提升 。 同时 , 对抗 、 域适应等方法也是研究人员较为关注的方法 。 在特定群体识别中 , 应考虑如何方便老年人使用人脸识别系统 。

  为了防范照片 、 视频 、 头模等假体对人脸识别系统的攻击 , 呈现攻击检测算法也是研究的热点 , 主要检测原理包括 :

  a ) 离散图像检测方式 , 即利用一幅或多幅图像进行判断 ;

  b ) 连续图像检测方式 , 即采用连续图像序列进行判断,如检测显示器边缘 、 边框 、 屏幕反光 、 像素点 、 条纹分析等进行判断 ;

  c ) 用户主动配合检测方式 , 即通过指令要求用户完成相应动作如点头 、 抬头 、左右转头 、 张嘴 、 眨眼 、 跟读屏显提示信息等进行判断 ;

  d ) 基于辅助硬件设备的检测方式 , 即利用辅助硬件设备获取更多判断依据辅助进行判断 , 如利用深度摄像头采集人脸深度信息或利用特定波长光源投射并检测在皮肤或非皮肤材质上产生的发射率差异等 ;

  e ) 用户被动配合检测方式 , 如 : 利用静脉血管 、 肌肉 、骨骼 、 静脉血液中脱氧血色素对红外线的吸收特性 , 判断其是否来自活体 ; 通过特定指令引导用户眼球运动 , 并通过跟踪眼球运动以判断是否为真实活体 。

  多模态融合识别技术。多模态融合识别技术可以有效解决复杂场景下人脸单模态鲁棒性不足问题 。 如大角度 、 遮挡 、 像素过低引起的效果下降问题或应用场景对于安全性可靠性要求很高的场景 , 多模态可以增强识别的可信度 。

  多模态识别有两个发展方向 , 一个方向是在脸部图像特征识别的基础上 , 增加头肩和形体的识别 , 这种技术的好处是可以不必增加额外的采集单元 ; 另外一个方向是 , 融合其他生物识别模态 , 如静脉纹理 , 声纹信息等 , 这种技术除了能够提高算法的鲁棒性之外 , 还可以提高活体验证的可信度 , 在行业里受到了较为广泛的关注 。

参与评论
回复:
0/300
文明上网理性发言,评论区仅供其表达个人看法,并不表明a&s观点。
0
关于我们

资讯是全球知名展览公司百科展览集团旗下的专业媒体平台,自1994年品牌成立以来,一直专注于安全&自动化产业前沿产品、技术及市场趋势的专业媒体传播和品牌服务。从安全管理到产业数字化,资讯拥有首屈一指的国际行业展览会资源以及丰富的媒体经验,提供媒体、活动、展会等整合营销服务。

免责声明:本站所使用的字体和图片文字等素材部分来源于互联网共享平台。如使用任何字体和图片文字有冒犯其版权所有方的,皆为无意。如您是字体厂商、图片文字厂商等版权方,且不允许本站使用您的字体和图片文字等素材,请联系我们,本站核实后将立即删除!任何版权方从未通知联系本站管理者停止使用,并索要赔偿或上诉法院的,均视为新型网络碰瓷及敲诈勒索,将不予任何的法律和经济赔偿!敬请谅解!
© 2024 - 2030 Messe Frankfurt (Shenzhen) Co., Ltd, All rights reserved.
法兰克福展览(深圳)有限公司版权所有 粤ICP备12072668号 粤公网安备 44030402000264号
用户
反馈
Baidu
map