在2018年及其以后,深层神经网络和机器学习在更大的人工智能(AI)领域会如何发展?我们如何能开发出越来越复杂的机器以在日常生活中帮助人类?这些都是普渡大学机器学习硬件教授尤金尼奥·库鲁尔塞罗(Eugenio Culurciello)关注的问题。请注意,本文的重点并非有关AI的预测,而是对该领域发展轨迹、趋势以及技术需求的详细分析,以帮助创造更有用的AI。当然,并非所有的机器学习都是针对AI的,还有些其他容易实现的目标,下面我们就仔细审视下。
AI领域的目标是通过机器上实现人类和超人的能力,以便让它们在日常生活中帮助我们。自动驾驶车辆、智能家居、智能助理以及安全摄像头将是植入AI技术的首批目标,家庭烹饪和清洁机器人、无人侦察机和机器人则是第二批目标。其他目标还有移动设备上的助理,全职陪伴助理(可以听到和看到我们的生活经历)。而AI领域的终极目标是打造完全自主的合成实体,它可以在日常工作中以相当于人类或超越人类的水平行事。
软件
在这里,软件被定义为通过优化算法训练的神经网络构架以解决特定的任务。今天,神经网络是用来学习解决问题的实际工具,其中涉及通过大数据集进行分类学习。但这并不是全部AI,它要求在现实世界中,在没有监督的情况下学习,也要吸取以前从未见过的经验,常常需要把以前学到的知识结合起来以解决当前的挑战。
如何让目前的神经网络演变成AI?
神经网络架构:几年前,当神经网络架构发展起来的时候,我们经常认为从数据中自动学习算法的参数拥有巨大优势,而且这比手工编写的算法功能更强大。但我们忘了提到一个小细节,那就是作为“训练解决特定任务基础”的神经网络架构并未从数据中学习。事实上,它仍然是开发人员手工设计的。有鉴于此,目前它成为AI领域的主要限制之一。
然而,神经网络架构是学习算法的基本核心。即使我们的学习算法能够掌握新的技能,如果神经网络不正确,它们也无法得出正确结果。从数据中学习的神经网络架构存在的问题是,目前在一个大数据集上进行多架构实验花费的时间太长。我们必须尝试从头开始训练多个架构,并看看哪一个最有效。这就是我们今天使用的、非常耗时的试错过程!我们应该克服这一限制,并在这个非常重要的问题上多加思考。
无监督学习:我们不能总是干预神经网络,引导它们的每一次体验。我们不能在每个实例中都纠正它们,并提供它们的性能反馈。我们的生活也要持续下去!但这正是我们今天利用受监督神经网络所做的:我们为每个实例提供帮助,使它们能够正确执行。相反,人类只需从少数几个例子中学习,并且能够以连续的方式自我校正和学习更复杂的数据。
预测神经网络:目前神经网络的一个主要局限是它们没有人类大脑最重要的特征之一,即预测能力。关于人脑如何工作的一个主要理论是它能不断地预测,即拥有预测代码。如果你仔细想想,就会发现我们每天都在使用它。你提起一个自认为很轻的物体,但结果它却很重。这会让你感到惊讶,因为当你接近它的时候,你已经预测它将如何影响你和你的身体,或者你的整体环境。
预测不仅能让我们了解世界,还能知道我们什么时候不了解它,什么时候该学习。事实上,我们保存那些我们不知道并让我们感到吃惊的事情的信息,以便下次不会再犯同样的错误!认知能力绝对与我们大脑中的注意力机制有明显的联系:我们天生就有能力放弃99.9%的感官输入,只专注于对我们生存至关重要的数据,包括哪里存在威胁,哪里是我们逃避它的地方。或者,在现代世界里,当我们匆忙出门时,我的手机落在哪里。?构建预测神经网络是我们与现实世界互动的核心,并能在复杂的环境中发挥作用。因此,这是任何强化学习的核心网络。